博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
【转】 LDA必读的资料
阅读量:6501 次
发布时间:2019-06-24

本文共 4117 字,大约阅读时间需要 13 分钟。

时间总是不够用,这里就不自己写了,摘自一篇转发的博客,感觉挺有用!

一个大牛写的介绍,貌似需FQ

David M.Blei主页:,上面有布雷最新的文章:

以下内容来自网络,但是作者已经不可考啦,抱歉没法找到原始引用

关于LDA并行化:
那么若利用MapReduce实现,怎样的近似方法好呢?
斯坦福的ScalaNLP项目值得一看:
http://nlp.stanford.edu/javanlp/scala/scaladoc/scalanlp/cluster/DistributedGibbsLDA$object.html
 
另外还有NIPS2007的论文:
Distributed Inference for Latent DirichletAllocation http://books.nips.cc/papers/files/nips20/NIPS2007_0672
 
ICML2008的论文:
Fully Distributed EM for Very Large Datasetshttp://www.cs.berkeley.edu/~jawolfe/pubs/08-icml-em
 

 

LDA和HLDA:
 
(1)D. M. Blei, et al., "Latent Dirichlet allocation," Journal of Machine Learning Research, vol. 3, pp. 993-1022, 2003.
 
(2)T. L. Griffiths and M. Steyvers, "Finding scientific topics," Proceedings of the National Academy of Sciences, vol. 101, pp. 5228-5235, 2004.
 
(3)D. M. Blei, et al., "Hierarchical Topic Models and the Nested Chinese Restaurant Process," NIPS, 2003.
 
(4)Blei的LDA视频教程:http://videolectures.net/mlss09uk_blei_tm/
 
(5)Teh的关于Dirichlet Processes的视频教程:http://videolectures.net/mlss07_teh_dp/
 
(6)Blei的毕业论文:http://www.cs.princeton.edu/~blei/papers/Blei2004.pdf
 
(7)Jordan的报告:http://www.icms.org.uk/downloads/mixtures/jordan_talk.pdf
 
(8)G. Heinrich, "Parameter Estimation for Text Analysis," http://www.arbylon.net/publications/text-est.pdf
 
基础知识:
 
(1)P. Johnson and M. Beverlin, “Beta Distribution,” http://pj.freefaculty.org/ps707/Distributions/Beta.pdf
 
(2)M. Beverlin and P. Johnson, “The Dirichlet Family,” http://pj.freefaculty.org/stat/Distributions/Dirichlet.pdf
 
(3)P. Johnson, “Conjugate Prior and Mixture Distributions”, http://pj.freefaculty.org/stat/TimeSeries/ConjugateDistributions.pdf
 
(4)P.J. Green, “Colouring and Breaking Sticks:Random Distributions and Heterogeneous Clustering”, http://www.maths.bris.ac.uk/~mapjg/papers/GreenCDP.pdf
 
(5)Y. W. Teh, "Dirichlet Process", http://www.gatsby.ucl.ac.uk/~ywteh/research/npbayes/dp.pdf
 
(6)Y. W. Teh and M. I. Jordan, "Hierarchical Bayesian Nonparametric Models with Applications,”
 
http://www.stat.berkeley.edu/tech-reports/770.pdf
 
(7)T. P. Minka, "Estimating a Dirichlet Distribution", http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf
 
(8)北邮论坛的LDA导读:[导读]文本处理、图像标注中的一篇重要论文Latent Dirichlet Allocation,http://bbs.byr.edu.cn/article/PR_AI/2530?p=1
 
(9)Zhou Li的LDA Note:http://lsa-lda.googlecode.com/files/Latent Dirichlet Allocation note.pdf
 
(10)C. M. Bishop, “Pattern Recognition And Machine Learning,” Springer, 2006.
 
代码:
 
(1)Blei的LDA代码(C):http://www.cs.princeton.edu/~blei/lda-c/index.html
 
(2)BLei的HLDA代码(C):http://www.cs.princeton.edu/~blei/downloads/hlda-c.tgz
 
(3)Gibbs LDA(C++):http://gibbslda.sourceforge.net/
 
(4)Delta LDA(Python):http://pages.cs.wisc.edu/~andrzeje/research/deltaLDA.tgz
 
(5)Griffiths和Steyvers的Topic Modeling工具箱:http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
 
(6)LDA(Java):http://www.arbylon.net/projects/
 
(7)Mochihashi的LDA(C,Matlab):http://chasen.org/~daiti-m/dist/lda/
 
(8)Chua的LDA(C#):http://www.mysmu.edu/phdis2009/freddy.chua.2009/programs/lda.zip
 
(9)Chua的HLDA(C#):http://www.mysmu.edu/phdis2009/freddy.chua.2009/programs/hlda.zip
 
其他:
 
(1)S. Geman and D. Geman, "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. PAMI-6, pp. 721-741, 1984.
 
(2)B. C. Russell, et al., "Using Multiple Segmentations to Discover Objects and their Extent in Image Collections," in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, 2006, pp. 1605-1614.
 
(3)J. Sivic, et al., "Discovering objects and their location in images," in Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, 2005, pp. 370-377 Vol. 1.
 
(4)F. C. T. Chua, "Summarizing Amazon Reviews using Hierarchical Clustering," http://www.mysmu.edu/phdis2009/freddy.chua.2009/papers/amazon.pdf
 
(5)F. C. T. Chua, "Dimensionality Reduction and Clustering of Text Documents,” http://www.mysmu.edu/phdis2009/freddy.chua.2009/papers/probabilisticIR.pdf
 
(6)D Bacciu, "Probabilistic Generative Models for Machine Vision," http://www.math.unipd.it/~sperduti/AI09/bacciu_unipd_handouts.pdf

转载地址:http://dzvyo.baihongyu.com/

你可能感兴趣的文章
PHP通过读取DOM抓取信息
查看>>
DICOM医学图像处理:DICOM网络传输
查看>>
nio和传统Io的区别
查看>>
移动端网页布局中需要注意事项以及解决方法总结
查看>>
(原创)Linux下查看系统版本号信息的方法
查看>>
oracle
查看>>
redis使用过程中主机内核层面的一些优化
查看>>
我也要谈谈大型网站架构之系列(2)——纵观历史演变(下)
查看>>
大话设计模式(Golang) 二、策略模式
查看>>
使用PostgreSQL 9.6 架设mediawiki服务器
查看>>
数据库服务器硬件对性能的影响
查看>>
LVM
查看>>
windows+群辉服务器环境下,搭建git版本管理
查看>>
Boolean类型
查看>>
Ubuntu 修改源
查看>>
php 几个比较实用的函数
查看>>
(译)OpenGL ES2.0 – Iphone开发指引
查看>>
@RestController 与 @RequestMapping
查看>>
黑马程序员.bobo.DAY.1
查看>>
Unity shader 官网文档全方位学习(二)
查看>>